Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis.

نویسندگان

  • R Seifert
  • A Scholten
  • R Gauss
  • A Mincheva
  • P Lichter
  • U B Kaupp
چکیده

Rhythmic activity of neurons and heart cells is endowed by pacemaker channels that are activated by hyperpolarization and directly regulated by cyclic nucleotides (termed HCN channels). These channels constitute a multigene family, and it is assumed that the properties of each member are adjusted to fit its particular function in the cell in which it resides. Here we report the molecular and functional characterization of a human subtype hHCN4. hHCN4 transcripts are expressed in heart, brain, and testis. Within the brain, the thalamus is the predominant area of hHCN4 expression. Heterologous expression of hHCN4 produces channels of unusually slow kinetics of activation and inactivation. The mean potential of half-maximal activation (V(1/2)) was -75.2 mV. cAMP shifted V(1/2) by 11 mV to more positive values. The hHCN4 gene was mapped to chromosome band 15q24-q25. The characteristic expression pattern and the sluggish gating suggest that hHCN4 controls the rhythmic activity in both thalamocortical neurons and pacemaker cells of the heart.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A leucine zipper motif essential for gating of hyperpolarization-activated channels.

BACKGROUND It is poorly understood how hyperpolarization-activated cyclic nucleotide-gated channels (HCNs) function. RESULTS We have identified a leucine zipper in the S5 segment of HCNs, regulating hyperpolarization-activated and instantaneous current components. CONCLUSION The leucine zipper is essential for HCN channel gating. SIGNIFICANCE The identification and functional characteriza...

متن کامل

O3: Pharmacological Modulation of Thalamic KCNQ-Potassium Channels: Insight from Knock-out Mice

The channels belonging to the KCNQ gene family consist of 5 different subtypes, which assemble as pentameric channels. The KCNQ2-5 subunits are highly expressed in the ventrobasal thalamus (VB) where they function primarily as KCNQ2/3 heteromers. They underlie an outward potassium (K+)-current, called M-current (IM), which provides a hyperpolarizing drive, thus regulating neuronal excitability....

متن کامل

Reversed voltage-dependent gating of a bacterial sodium channel with proline substitutions in the S6 transmembrane segment.

Members of the voltage-gated-like ion channel superfamily have a conserved pore structure. Transmembrane helices that line the pore (M2 or S6) are thought to gate it at the cytoplasmic end by bending at a hinge glycine residue. Proline residues favor bending of alpha-helices, and substitution of proline for this glycine (G219) dramatically stabilizes the open state of a bacterial Na(+) channel ...

متن کامل

A novel mechanism of modulation of hyperpolarization-activated cyclic nucleotide-gated channels by Src kinase.

Hyperpolarization-activated cyclic nucleotide-gated channels (HCN1-4) play a crucial role in the regulation of cell excitability. Importantly, they contribute to spontaneous rhythmic activity in brain and heart. HCN channels are principally activated by membrane hyperpolarization and binding of cAMP. Here, we identify tyrosine phosphorylation by Src kinase as another mechanism affecting channel...

متن کامل

Intracellular calcium-dependent regulation of the sperm-specific calcium-activated potassium channel, hSlo3, by the BKCa activator LDD175

Plasma membrane hyperpolarization associated with activation of Ca2+-activated K+ channels plays an important role in sperm capacitation during fertilization. Although Slo3 (slowpoke homologue 3), together with the auxiliary γ2-subunit, LRRC52 (leucine-rich-repeat-containing 52), is known to mediate the pH-sensitive, sperm-specific K+ current KSper in mice, the molecular identity of this channe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 16  شماره 

صفحات  -

تاریخ انتشار 1999